Minimum hypothesis phone error as a decoding method for speech recognition

نویسندگان

  • Haihua Xu
  • Daniel Povey
  • Jie Zhu
  • Guanyong Wu
چکیده

In this paper we show how methods for approximating phone error as normally used for Minimum Phone Error (MPE) discriminative training, can be used instead as a decoding criterion for lattice rescoring. This is an alternative to Confusion Networks (CN) which are commonly used in speech recognition. The standard (Maximum A Posteriori) decoding approach is a Minimum Bayes Risk estimate with respect to the Sentence Error Rate (SER); however, we are typically more interested in the Word Error Rate (WER). Methods such as CN and our proposed Minimum Hypothesis Phone Error (MHPE) aim to get closer to minimizing the expected WER. Based on preliminary experiments we find that our approach gives more improvement than CN, and is conceptually simpler.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Bayes-Risk Decoding cons for Information Retrie

The paper addresses a new evaluation measure of automatic speech recognition (ASR) and a decoding strategy oriented for speech-based information retrieval (IR). Although word error rate (WER), which treats all words in a uniform manner, has been widely used as an evaluation measure of ASR, significance of words are different in speech understanding or IR. In this paper, we define a new ASR eval...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Continuous Digits Recognition Leveraging Invariant Structure

Recently, an invariant structure of speech was proposed, where the inevitable acoustic variations caused by non-linguistic factors are effectively removed from speech. The invariant structure was applied to isolated word recognition and the experimental results showed good performance. However, the previous method can’t apply to continuous speech recognition directly because there was no effici...

متن کامل

Vocabulary Independent Speech Recognition Using Particles

A method is presented for performing speech recognition that is not dependent on a fixed word vocabulary. Particles are used as the recognition units in a speech recognition system which permits word-vocabulary independent speech decoding. A particle represents a concatenated phone sequence. Each string of particles that represents a word in the one-best hypothesis from the particle speech reco...

متن کامل

An Empirical Study of Word Error Minimization Approaches for Mandarin Large Vocabulary Continuous Speech Recognition

This paper presents an empirical study of word error minimization approaches for Mandarin large vocabulary continuous speech recognition (LVCSR). First, the minimum phone error (MPE) criterion, which is one of the most popular discriminative training criteria, is extensively investigated for both acoustic model training and adaptation in a Mandarin LVCSR system. Second, the word error minimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009